Posts Tagged bread

‘Cheapest’ lunchtime meal unveiled

Cheap as....

Britain’s ‘cheapest’ lunchtime meal has been unveiled – the toast sandwich.

The Royal Society of Chemistry (RSC) is reviving the mid-Victorian dish, which consists of two slices of bread around a slice of toast. The meal, costing 7.5p, was first promoted by Victorian food writer Mrs Beeton. It is taken from Mrs Beeton’s Book of Household Management which became a best-seller when it was published 150 years ago.
To celebrate that anniversary, the RSC decided to focus on meals that reflected ‘stern days’ to come in Britain, rather than one of the book’s many ‘table-groaning creations’.

You simply put a piece of dry toast between two slices of bread and butter, with salt and pepper to taste. I’ve tried it and it’s surprisingly nice to eat and quite filling,

says the RSC’s Dr John Emsley.

I would emphasise that toast sandwiches are also good at saving you calories as well as money, provided you only have one toast sandwich for lunch and nothing else.

Salt in bread



A third of breads contain more salt than recommended under guidelines being introduced next year, according to campaign
group CASH (Campaign for Action on Salt and Health).

The figures came after the Department of Health announced that bread accounts for more salt in our diet than any other food, making up almost a fifth of our daily intake. However, manufacturers said many loaves with the lowest salt levels were supermarket brands, which were the most popular.


Despite salt levels in bread being reported to have fallen by about a third over the past decade, bread manufacturers are under mounting pressure to cut down further. However, in reducing salt levels further, manufacturers are faced with numerous technical challenges.

Firstly, salt influences the production process by improving the dough handling properties and also helps control yeast activity during fermentation. In addition, it influences the sensory properties of bread and is directly linked to consumer acceptance. For these reasons, it would be difficult to completely eliminate salt from the recipe. The main challenge in making low salt bread is that is becomes sticky and is less easy to process with lowering salt levels, meaning that there is a potential for the dough to stop processing lines, leading to down time and wastage.

Salt also plays a major role in achieving the flavour of the bread and, of course, on product shelf life. Products with reduced salt may require balancing of the flavours to achieve an acceptable product.

* Take the bread health scare with a pinch of salt…

Chemist in the kitchen


A page from our first website!

If you want to know more about how food additives tie in with the chemistry that goes on in the kitchen, a downloadable booklet entitled ‘In the mix’ is accessible from the home page, or from the image on this page.

Chemicals have always been welcome in the kitchen: sodium bicarbonate, pectin, yeast, acetic acid etc.

Every cook is a chemist. The first chemical laboratories, back in the Middle Ages, were glorified kitchens, and many chemical processes derive from techniques of cooking. The vital technique of distillation was perfected in the course of man’s search for intoxicating drinks. And far from being dehumanizing, such chemical processes have an ancient magic and glamour, as the great Italian writer Primo Levi pointed out (he was also a chemist):-

Distilling is beautiful.

‘First of all, because it is a slow, philosophic, and silent occupation, which keeps you busy but gives you time to think of other things, somewhat like riding a bike. Then because it involves a metamorphosis from liquid to invisible (vapour) invisible, and from this once again to liquid; but in this double journey, up and down, purity is obtained, an ambiguous and fascinating condition, which starts with chemistry and goes very far. And finally, when you set about distilling, you acquire the consciousness of repeating a ritual consecrated by centuries, almost a religious act, in which from imperfect material you obtain the essence, the usia, the spirit, and in the first place alcohol, which gladdens the spirit and warms the heart.’

Every kitchen contains a battery of chemical reagents, each with their specific chemical purpose; e.g. sodium bicarbonate, pectin, yeast, acetic acid, sodium chloride; and also substances, such as milk and eggs, that are not usually thought of as chemicals but which actually miracle reagents that chemists would still be incapable of creating if they didn’t already exist.

In many cases, ingredients that sound like chemicals are derived from natural products: lecithin from soya is similar to egg lecithin, acetic acid comes from vinegar, Vitamin C is the active ingredient of lemon juice, and so on. The principle of using additives is something that every cook, high or low, uses every time they prepare a meal. To understand the processes of making sauces, meringues, bread and cakes, of marinading, tenderising and caramelising is to become a food chemist, and it greatly enhances the pleasure of cooking to see it from a chemical point of view. Cooking is chemistry in action, with the added benefit that you can eat the results.