Making life taste better

Anti-caking agents

Anti-caking agents

Anti-caking agents are used to prevent powdery and granular food products from absorbing water and clumping together

Many powdery and granular food products have a tendency to absorb water and clump together. Whether it’s table salt, icing sugar, non-dairy creamer, instant soup or even grated parmesan cheese, if the ingredients don’t flow freely then they are difficult to use. Salt cellars wouldn’t dispense salt, drink vending machines would block up, and the parmesan wouldn’t spread evenly across the plate.

Anti-caking agents are used to prevent this problem. Many are natural products such as talc and bentonite, Anti-caking agents are used to prevent powdery and granular food products from absorbing water and clumping togetherand others are manufactured from natural sources, such as silicon dioxide and several silicates. They don’t modify the food itself – they just make it less ‘sticky’, often by soaking up water.

Bentonite (E558) is a naturally occurring porous volcanic clay, which is used as an anticaking agent. It is also used to remove proteins from white wine, which would otherwise make it go cloudy.

Calcium silicate (E552) is made from chalk, limestone or diatomaceous earth, and is commonly used as an anticaking agent in dry products.

Silicon dioxide (E551) is common in nature – it is the main component of sand. It is used to improve the flow of dry products, and also to absorb water.

Sodium aluminosilicate (E554) is a synthetic mixture of sodium, aluminium and silicon oxides which is used as an anticaking agent.

Talc (E533b) is a natural mineral, which is made from hydrated magnesium silicate. It can be used in many different food products to prevent clumping.

Use of food additives ‘safer and more transparent’ thanks to new legislation.

Safer and more transparent use.

The use of additives in food will soon become even safer and more transparent thanks to legislation adopted by the European Commission.

“This represents a landmark in our efforts to strengthen food safety in the EU,” says Health and Consumer Policy Commissioner John Dalli (pictured). “The adoption of two regulations on additives will further empower citizens and industry alike as they will make it easier for everyone concerned to know exactly what additives are allowed in foodstuffs.”

The two regulations establish two new lists. The first concerns additives in food and will come into force in June 2013. This list will allow consumers to easily identify which additives are authorised in a particular foodstuff. The second list relates to additives in food ingredients, and will apply 20 days after its publication in the EU’s Official Journal.

Transparency is one major benefit of the new legislation as the new list makes it obvious that in some food categories the authorised additives are very limited or not allowed at all. This is the case, for instance, for unflavoured yogurt, butter, compote, pasta, simple bread, honey, water and fruit juice. In other categories, usually those concerning highly processed foodstuffs – such as confectionery, snacks, sauces and flavoured drinks – a large number of additives are authorised.

“Any initiative that helps educate and enlighten consumers is to be welcomed,” says an FAIA spokesman.

This legislation does just that, while helping to reinforce the message that authorised additives are not only safe but also play a key role in food safety.

Chemist in the kitchen

A page from our first website!

If you want to know more about how food additives tie in with the chemistry that goes on in the kitchen, a downloadable booklet entitled ‘In the mix’ is accessible from the home page, or from the image on this page.

Chemicals have always been welcome in the kitchen: sodium bicarbonate, pectin, yeast, acetic acid etc.

Every cook is a chemist. The first chemical laboratories, back in the Middle Ages, were glorified kitchens, and many chemical processes derive from techniques of cooking. The vital technique of distillation was perfected in the course of man’s search for intoxicating drinks. And far from being dehumanizing, such chemical processes have an ancient magic and glamour, as the great Italian writer Primo Levi pointed out (he was also a chemist):-

Distilling is beautiful.

‘First of all, because it is a slow, philosophic, and silent occupation, which keeps you busy but gives you time to think of other things, somewhat like riding a bike. Then because it involves a metamorphosis from liquid to invisible (vapour) invisible, and from this once again to liquid; but in this double journey, up and down, purity is obtained, an ambiguous and fascinating condition, which starts with chemistry and goes very far. And finally, when you set about distilling, you acquire the consciousness of repeating a ritual consecrated by centuries, almost a religious act, in which from imperfect material you obtain the essence, the usia, the spirit, and in the first place alcohol, which gladdens the spirit and warms the heart.’

Every kitchen contains a battery of chemical reagents, each with their specific chemical purpose; e.g. sodium bicarbonate, pectin, yeast, acetic acid, sodium chloride; and also substances, such as milk and eggs, that are not usually thought of as chemicals but which actually miracle reagents that chemists would still be incapable of creating if they didn’t already exist.

In many cases, ingredients that sound like chemicals are derived from natural products: lecithin from soya is similar to egg lecithin, acetic acid comes from vinegar, Vitamin C is the active ingredient of lemon juice, and so on. The principle of using additives is something that every cook, high or low, uses every time they prepare a meal. To understand the processes of making sauces, meringues, bread and cakes, of marinading, tenderising and caramelising is to become a food chemist, and it greatly enhances the pleasure of cooking to see it from a chemical point of view. Cooking is chemistry in action, with the added benefit that you can eat the results.